Send to

Choose Destination
See comment in PubMed Commons below
Biochem Pharmacol. 2007 Oct 15;74(8):1102-11. Epub 2007 Jun 2.

Heterogeneity and complexity of native brain nicotinic receptors.

Author information

  • 1CNR, Institute of Neuroscience, Cellular and Molecular Pharmacology, Department of Medical Pharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy.


Neuronal cholinergic nicotinic receptors (nAChRs) are a heterogeneous class of cationic channels that are widely distributed in the nervous system that have specific functional and pharmacological properties. They consist of homologous subunits encoded by a large multigene family, and their opening is physiologically controlled by the acetylcholine neurotransmitter or exogenous ligands such as nicotine. Their biophysical and pharmacological properties depend on their subunit composition, which is therefore central to understanding receptor function in the nervous system and discovering new subtype-selective drugs. We will review rodent brain subtypes by discussing their subunit composition, pharmacology and localisation and, when possible, comparing them with the same subtypes present in the brain of other mammalian species or chick. In particular, we will focus on the nAChRs present in the visual pathway (retina, superior colliculus and nucleus geniculatus lateralis), in which neurons express most, if not all, nAChR subunits. In addition to the major alpha4beta2 and alpha7 nAChR subtypes, the visual pathway selectively expresses subtypes with a complex subunit composition. By means of ligand binding and immunoprecipitation and immunopurification experiments on tissues obtained from control and lesioned rats, and wild-type and nAChR subunit knockout mice, we have qualitatively and quantitatively identified, and pharmacologically characterised, the multiple complex native subtypes containing up to four different subunits.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center