Send to

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2007 Feb 15;41(4):1288-96.

Nitrile, aldehyde, and halonitroalkane formation during chlorination/chloramination of primary amines.

Author information

Department of Chemical Engineering, Yale University, Mason Lab 313b, 9 Hillhouse Avenue, New Haven, Connecticut 06520, USA.


The decreasing availability of pristine water supplies is prompting drinking water utilities to exploit waters impacted by wastewater effluents and agricultural runoff. As these waters feature elevated organic nitrogen concentrations, the pathways responsible for transformation of organic nitrogen into toxic nitrogenous disinfection byproducts during chlorine and chloramine disinfection are of current concern. Partially degraded biomolecules likely constitute a significant fraction of organic nitrogen in these waters. As primary amines occur in important biomolecules, we investigated formation pathways for nitrile, aldehyde, and halonitroalkane byproducts during chlorination and chloramination of model primary amines. Chlorine and chloramines transformed primary amines to nitriles and aldehydes in significant yields overtime scales relevant to drinking water distribution systems. Yields of halonitroalkanes were less significant yet may be important because of the high toxicity associated with these compounds. Our results indicate that chloramination should reduce nitrile concentrations compared to chlorination but may increase the formation of aldehydes and halonitroalkanes at high oxidant doses.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center