Send to

Choose Destination
See comment in PubMed Commons below
Dalton Trans. 2007 Jul 14;(26):2802-11. Epub 2007 May 4.

Synthesis, coordination and catalytic use of 1-(diphenylphosphino)-1'-carbamoylferrocenes with pyridyl-containing N-substituents.

Author information

  • 1Charles University, Faculty of Natural Sciences, Department of Inorganic Chemistry, Hlavova 2030, 128 40, Prague, Czech Republic.


Ferrocene phosphinocarboxamides, 1-(diphenylphosphino)-1'-{N-[(2-pyridyl)methyl]carbamoyl}ferrocene (1) and 1-(diphenylphosphino)-1'-{N-[2-(2-pyridyl)ethyl]carbamoyl}ferrocene (2) were prepared from 1-(diphenylphosphino)-1'-ferrocenecarboxylic acid and studied as ligands for palladium. Starting with [PdCl2(cod)], the reactions at a 2 : 1 ligand-to-metal ratio gave uniformly the bis-phosphine complexes [PdCl2(L-kappaP)2] (3, L = 1; 4, L = 2) whereas those performed at a 1 : 1 ratio yielded distinct products: [PdCl2(1-kappa(2)P,N)] (5) with 1 coordinating as a trans-spanning P,N-donor, and the symmetric, P,N-bridged dimer [(micro-2-N,P)2{PdCl2}2] (6), respectively. The crystal structures of 1, 2, 4.4CHCl3, 5.AcOH, and 6.8CHCl3 as determined by X-ray diffraction showed the compounds to form well defined solid-state assemblies through hydrogen bonds. Testing of the phosphinocarboxamides in the palladium-catalysed Suzuki cross-coupling reaction revealed 1 and 2, combined with Pd(OAc)2 to form efficient catalysts for the reactions of aryl bromides while aryl chlorides coupled only when activated with electron-withdrawing groups.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center