Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Pathol. 2007 Jul;171(1):297-303.

c-Jun NH2-terminal kinase 1 plays a critical role in intestinal homeostasis and tumor suppression.

Author information

1
Department of Pathology, University of Illinois at Chicago, Room 113 CSN, Chicago, IL 60612, USA.

Abstract

The c-Jun NH(2)-terminal kinase (JNK) signal transduction pathway plays important roles in cellular processes and stress. However, the role of JNK1 in intestinal homeostasis and tumorigenesis is unknown. Therefore, we used a JNK1 knockout mouse model to characterize intestinal cell maturation and tumorigenesis. In addition, colon cancer cell lines were used to validate the role of JNK1 and to elucidate the underlying molecular mechanisms in vitro. To our surprise, we found that mice with targeted inactivation of JNK1 spontaneously developed intestinal tumors. The normal mucosa in JNK1-deficient mice showed decreased cell differentiation and increased cell proliferation. This tumorigenesis was closely linked to the down-regulation of p21(WAF1/cip1), a cyclin-dependent kinase inhibitor, in intestinal epithelial cells. Immunohistochemical staining showed that JNK1 was highly expressed in the differentiation compartment of the intestinal mucosa and that the expression of JNK1 was significantly decreased in both human colonic and mouse intestinal tumors. In the colon cancer cell lines, JNK1 expression was up-regulated during spontaneous differentiation, corresponding to the up-regulation of p21(WAF1/cip1). Moreover, butyrate-induced p21 expression was linked to phosphorylation of JNK1. Reduced JNK1 expression by small interfering RNA suppressed butyrate-induced apoptosis. We concluded that JNK1 plays a critical role in the regulation of homeostasis and in the suppression of tumor formation in the intestine, which was linked to the altered expression of p21(WAF1/cip1).

PMID:
17591974
PMCID:
PMC1941582
DOI:
10.2353/ajpath.2007.061036
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center