Send to

Choose Destination
Nat Cell Biol. 2007 Jul;9(7):775-87. Epub 2007 Jun 24.

MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation.

Author information

Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.


We investigated the role of microRNAs (miRNA) 17-5p, 20a and 106a in monocytic differentiation and maturation. In unilineage monocytic culture generated by haematopoietic progenitor cells these miRNAs are downregulated, whereas the transcription factor acute myeloid leukaemia-1 (AML1; also known as Runt-related transcription factor 1, Runx1) is upregulated at protein but not mRNA level. As miRNAs 17-5p, 20a and 106a bind the AML1 mRNA 3'UTR, their decline may unblock AML1 translation. Accordingly, transfection with miRNA 17-5p-20a-106a suppresses AML1 protein expression, leading to M-CSF receptor (M-CSFR) downregulation, enhanced blast proliferation and inhibition of monocytic differentiation and maturation. Treatment with anti-miRNA 17-5p, 20a and 106a causes opposite effects. Knockdown of AML1 or M-CSFR by short interfering RNA (siRNA) mimics the action of the miRNA 17-5p-20a-106a, confirming that these miRNAs target AML1, which promotes M-CSFR transcription. In addition, AML1 binds the miRNA 17-5p-92 and 106a-92 cluster promoters and transcriptionally inhibits the expression of miRNA 17-5p-20a-106a. These studies indicate that monocytopoiesis is controlled by a circuitry involving sequentially miRNA 17-5p-20a-106a, AML1 and M-CSFR, whereby miRNA 17-5p-20a-106a function as a master gene complex interlinked with AML1 in a mutual negative feedback loop.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center