Format

Send to

Choose Destination
See comment in PubMed Commons below
BMC Neurosci. 2007 Jun 22;8:43.

Age-related declines in a two-day reference memory task are associated with changes in NMDA receptor subunits in mice.

Author information

1
Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA. Kathy.Magnusson@oregonstate.edu

Abstract

BACKGROUND:

C57BL/6 mice show a relationship during aging between NMDA receptor expression and spatial reference memory performance in a 12-day task. The present study was designed to determine if age-related deficits could be detected with a shorter testing protocol and whether these deficits showed a relationship with NMDA receptors. Mice were trained in a reference memory task for two days in a Morris water maze. Cued testing was performed either after or prior to reference memory testing. Crude synaptosomes were prepared from prefrontal/frontal cortex and hippocampus of the mice that underwent reference memory testing first. NMDA receptor subunit and syntaxin proteins were analyzed with Western blotting.

RESULTS:

Young mice showed significant improvement in probe and place learning when reference memory testing was done prior to cued testing. A significant decrease in performance was seen between 3 and 26 months of age with the two-day reference task, regardless of whether cued testing was performed before or after reference memory testing. There was a significant decline in the protein expression of the epsilon2 and zeta1 subunits of the NMDA receptor and syntaxin in prefrontal/frontal cortex. The subunit changes showed a significant correlation with both place and probe trial performance.

CONCLUSION:

The presence of an age-related decline in performance of the reference memory task regardless of when the cued trials were performed suggests that the deficits were due to factors that were unique to the spatial reference memory task. These results also suggest that declines in specific NMDA receptor subunits in the synaptic pool of prefrontal/frontal brain regions contributed to these age-related problems with performing a spatial reference memory task.

PMID:
17587455
PMCID:
PMC1919384
DOI:
10.1186/1471-2202-8-43
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center