Format

Send to

Choose Destination
See comment in PubMed Commons below
Int J Parasitol. 2007 Dec;37(14):1599-607. Epub 2007 May 18.

Quantitative dissection of clone-specific growth rates in cultured malaria parasites.

Author information

1
Department of Biological Sciences, University of Notre Dame, 280 Galvin Life Sciences, Notre Dame, IN 46556, USA.

Abstract

Measurement of parasite proliferation in cultured red blood cells underpins many facets of malaria research, from drug sensitivity assays to assessing the impact of experimentally altered genes on parasite growth, virulence and fitness. Pioneering efforts to grow Plasmodium falciparum in cultured red blood cells revolutionised malaria research and spurred the development of semi-high-throughput growth assays using radio-labelled hypoxanthine (Hx), an essential nucleic acid precursor, as a reporter of whole-cycle proliferation [Trager, W., Jensen, J.B., 1976. Human malaria parasites in continuous culture. Science 193, 673-675; Desjardins, R.E., Canfield, C.J., Haynes, J.D., Chulay, J.D., 1979. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob. Agents Chemother. 16, 710-718]. The isotopic Hx assay remains the standard quantitative growth assay with which newer non-radioactive procedures based on fluorescent DNA dyes or ELISA are compared. All of these readouts are surrogate reporters of changes in bulk parasitemias, reflecting proliferation over entire asexual reproductive cycles. While quantitatively robust and amenable to semi-high-throughput applications, these methods are blind to the underlying developmental and cellular events of growth in human red blood cells. Modern whole-genome tools including gene knockouts, mutagenesis and small molecule screens promise to reveal much about basic parasite biology; however methods to precisely quantify the within-cycle growth process are needed. Here we elaborate on the classical growth index, i.e. changes in parasitemia, by quantifying sub-phenotypes of a rapid proliferator, the multi-drug resistant clone Dd2, and a standard wild-type clone, HB3. These data illustrate differences in cycle duration, merozoite production, and invasion rate and efficiency that underpin Dd2's average 2-fold proliferation advantage over HB3 per erythrocytic cycle. The ability to refine growth phenotypes will inform the search for molecular determinants of differential parasite growth rates and broaden our understanding of killing mechanisms and cellular targets of antimalarial drugs.

PMID:
17585919
PMCID:
PMC2268714
DOI:
10.1016/j.ijpara.2007.05.003
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center