Format

Send to

Choose Destination
J Agric Food Chem. 2007 Jul 25;55(15):6285-91. Epub 2007 Jun 22.

Mechanism of deactivation of triplet-excited riboflavin by ascorbate, carotenoids, and tocopherols in homogeneous and heterogeneous aqueous food model systems.

Author information

1
Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.

Abstract

Tocopherols (alpha, beta, gamma, and delta) and Trolox were found to deactivate triplet-excited riboflavin in homogeneous aqueous solution (7:3 v/v tert-butanol/water) with second-order reaction rates close to diffusion control [k2 between 4.8 x 10(8) (delta-tocopherol) and 6.2 x 10(8) L mol(-1) s(-1) (Trolox) at 24.0 +/- 0.2 degrees C] as determined by laser flash photolysis transient absorption spectroscopy. In aqueous buffer (pH 6.4) the rate constant for Trolox was 2.6 x 10(9) L mol(-1) s1 and comparable to the rate constant found for ascorbate (2.0 x 10(9) L mol(-1) s(-1)). The deactivation rate constant was found to be inferior in heterogeneous systems as shown for alpha-tocopherol and Trolox in aqueous Tween-20 emulsion (approximately by a factor of 4 compared to 7:3 v/v tert-butanol/water). Neither beta-carotene (7:3 v/v tert-butanol/water and Tween-20 emulsion), lycopene (7:3 v/v tert-butanol/water), nor crocin (aqueous buffer at pH 6.4, 7:3 v/v tert-butanol/water, and Tween-20 emulsion) showed any quenching on the triplet excited state of riboflavin. Therefore, all carotenoids seem to reduce the formation of triplet-excited riboflavin through an inner-filter effect. Activation parameters were based on the temperature dependence of the triplet-excited deactivation between 15 and 35 degrees C, and the isokinetic behavior, which was found to include purine derivatives previously studied, confirms a common deactivation mechanism with a bimolecular diffusion-controlled encounter with electron (or hydrogen atom) transfer as rate-determining step. DeltaH for deactivation by ascorbic acid, Trolox, and homologue tocopherols (ranging from 18 kJ mol(-1) for Trolox in Tween-20 emulsion to 184 kJ mol(-1) for ascorbic acid in aqueous buffer at pH 6.4) showed a linear dependence on DeltaS (ranging from -19 J mol(-1) K(-1) for Trolox in aqueous buffer at pH 6.4 to +550 J mol(-1) K(-1) for ascorbic acid in aqueous buffer pH 6.4). Among photooxidation products from the chemical quenching, lumicrome, alpha-tocopherol quinones and epoxyquinones, and alpha-tocopherol dimers were identified by ESI-QqTOF-MS.

PMID:
17585774
DOI:
10.1021/jf063497q
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center