Format

Send to

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2007 Jul 18;129(28):8756-65. Epub 2007 Jun 22.

Red light in chemiluminescence and yellow-green light in bioluminescence: color-tuning mechanism of firefly, Photinus pyralis, studied by the symmetry-adapted cluster-configuration interaction method.

Author information

1
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

Abstract

The yellow-green luminescence from firefly luciferase has long been understood to be the emission from enol-oxyluciferin. However, a recent experiment showed that an oxyluciferin constrained to the keto form produced a yellow-green emission in luciferase (Branchini, B. R.; Murtiashaw, M. H.; Magyar, R. A.; Portier, N. C.; Ruggiero, M. C.; Stroh, J. G. J. Am. Chem. Soc. 2002, 124, 2112-2113). The present quantum mechanical/molecular mechanical and symmetry-adapted cluster-configuration interaction (SAC-CI) theoretical study supports the keto-form to be the yellow-green bioluminescence state in luciferase. We give the theoretically optimized structure of the excited state of oxyluciferin within luciferase, which gives luminescence calculated by the SAC-CI method that is close to the experimental value. Coulombic interactions with neighboring residues, in particular Arg218 and the phosphate group of AMP, play important roles in the color-tuning mechanism. Transformation to the enol form is energetically unfavorable in the luciferase environment. The twisted intramolecular charge-transfer (TICT) state is meta stable and would be easily relaxed to the co-planer structure. Further analyses were performed to verify the spectral-tuning mechanism based on the protonation state and the resonance structure of oxyluciferin.

PMID:
17585760
DOI:
10.1021/ja0611691
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center