Send to

Choose Destination
Biochemistry. 1976 Mar 9;15(5):1137-44.

Subunit structure of human erythrocyte glycophorin A.


Glycophorin A is a sialoglycoprotein isolated from human erythrocyte membranes which seems to exist as stable dimeric complexes in the presence of sodium dodecyl sulfate. When analyzed by dodecyl sulfate acrylamide electrophoresis this molecule forms two PAS-stainable bands (PAS-U and PAS-2) which are reversibly interconvertible. This change in electrophoretic mobility is dependent on the concentration of dodecyl sulfate, the use of Trisbuffer systems, the protein concentration in the incubation mixture, and the duration and temperature of incubation before electrophoresis. Reducing agents do no influence the results. Chromatography of the sialoglycopeptides on Sepharose columns in dodecyl sulfate before and after heat treatment gave similar results. A small hydrophobic peptide (T-6) derived from glycophorin A was able to prevent reassociation of the monomeric subunits back to the higher molecular weight form. This peptide was able to bind to the subunit of glycophorin A, but not to the high molecular weight complex. These results are consistent with a model of glycophorin A composed of two subunits which can dissociate and reassociate in the presence of detergents. These subunits may interact via the hydrophobic portions of the polypeptide chains.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center