Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Opt. 2007 Jul 10;46(20):4434-43.

Direct-detection Doppler wind measurements with a Cabannes-Mie lidar: a. Comparison between iodine vapor filter and Fabry-Perot interferometer methods.

Author information

1
Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA.

Abstract

Atmospheric line-of-sight (LOS) wind measurement by means of incoherent Cabannes-Mie lidar with three frequency analyzers with nearly the same maximum transmission of ~80% that could be fielded at different wavelengths is analytically considered. These frequency analyzers are (a) a double-edge Fabry-Perot interferometer (FPI) at 1064 nm (IR-FPI), (b) a double-edge Fabry-Perot interferometer at 355 nm (UV-FPI), and (c) an iodine vapor filter (IVF) at 532 nm with two different methods, using either one absorption edge, single edge (se-IVF), or both absorption edges, double edge (de-IVF). The effect of the backscattered aerosol mixing ratio, R(b), defined as the ratio of the aerosol volume backscatter coefficient to molecular volume backscatter coefficient, on LOS wind uncertainty is discussed. Assuming a known aerosol mixing ratio, R(b), and 100,000 photons owing to Cabannes scattering to the receiver, in shot-noise-limited detection without sky background, the LOS wind uncertainty of the UV-FPI in the aerosol-free air (R(b)=0), is lower by ~16% than that of de-IVF, which has the lowest uncertainty for R(b) between 0.02 and 0.08; for R(b)>0.08, the IR-FPI yielded the lowest wind uncertainty. The wind uncertainty for se-IVF is always higher than that of de-IVF, but by less than a factor of 2 under all aerosol conditions, if the split between the reference and measurement channels is optimized. The design flexibility, which allows the desensitization of either aerosol or molecular scattering, exists only with the FPI system, leading to the common practice of using IR-FPI for the planetary boundary layer and using UV-FPI for higher altitudes. Without this design flexibility, there is little choice but to use a single wavelength IVF system at 532 nm for all atmospheric altitudes.

PMID:
17579699
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Support Center