Send to

Choose Destination
J Microencapsul. 2007 Aug;24(5):430-44.

Submerged electrosprays: a versatile approach for microencapsulation.

Author information

Department of Mechanical Engineering, University College London. UK.


The unearthing of fundamental science and technology associated with microencapsulation is an ongoing exciting scientific endeavour focused on by several scientists. Encapsulated structures (containing either a gas, molecules or materials) previously have been shown as having widespread applications across the physical and life sciences. In particular, such methodologies used for forming encapsulations in medical-related studies have shown great promise from diagnostics and imaging, to gene therapy and drug delivery which are only a few amongst several other applications. At present there are numerous 'jet-based' manifestations available for microencapsulation, these primarily root from either capillary or channel-based techniques. The driving mechanisms employed in these approaches exploit aerodynamic/pressure gradients to piezoelectricity. In this paper submerged electrosprays a multipurpose electric field driven jet-based technique is explored for forming near mono-dispersed encapsulations sized in the micrometer range. Our studies elucidate the ability to form microencapsulations containing either a gas or a micro/nanoparticulate-based material suspension as capsules sized in the ranges approximately 65-80 microm, approximately 8-25 microm to approximately 3-14 microm, respectively. We believe this technique can significantly contribute to the microencapsulation field of research based on both the size of the generated encapsulations to the containment of immiscible high viscosity particulate-based suspensions. Furthermore our investigations show the ability to control the production of these encapsulations in terms of both their size and rate of generation with ease; hence demonstrating this electrospray-assisted microencapsulation route as having a wide range of applications. It should be noted that in its present form this technique could be explored for generating emulsions with a variety of materials especially with living organisms for applications in the clinical and biomedical areas of research.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center