Format

Send to

Choose Destination
J Mol Biol. 2007 Aug 3;371(1):256-68. Epub 2007 May 31.

Spackling the crack: stabilizing human fibroblast growth factor-1 by targeting the N and C terminus beta-strand interactions.

Author information

1
Department of Biomedical Sciences, Florida State University, Tallahassee FL 32306, USA.

Abstract

The beta-trefoil protein human fibroblast growth factor-1 (FGF-1) is made up of a six-stranded antiparallel beta-barrel closed off on one end by three beta-hairpins, thus exhibiting a 3-fold axis of structural symmetry. The N and C terminus beta-strands hydrogen bond to each other and their interaction is postulated from both NMR and X-ray structure data to be important in folding and stability. Specific mutations within the adjacent N and C terminus beta-strands of FGF-1 are shown to provide a substantial increase in stability. This increase is largely correlated with an increased folding rate constant, and with a smaller but significant decrease in the unfolding rate constant. A series of stabilizing mutations are subsequently combined and result in a doubling of the DeltaG value of unfolding. When taken in the context of previous studies of stabilizing mutations, the results indicate that although FGF-1 is known for generally poor thermal stability, the beta-trefoil architecture appears capable of substantial thermal stability. Targeting stabilizing mutations within the N and C terminus beta-strand interactions of a beta-barrel architecture may be a generally useful approach to increase protein stability. Such stabilized mutations of FGF-1 are shown to exhibit significant increases in effective mitogenic potency, and may prove useful as "second generation" forms of FGF-1 for application in angiogenic therapy.

PMID:
17570396
DOI:
10.1016/j.jmb.2007.05.065
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center