Format

Send to

Choose Destination
Plant Cell Rep. 2007 Oct;26(10):1791-800. Epub 2007 Jun 14.

Production and genetic analysis of partial hybrids in intertribal crosses between Brassica species (B. rapa, B. napus) and Capsella bursa-pastoris.

Author information

1
National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.

Abstract

Capsella bursa-pastoris (L.) Medic (2n = 4x = 32) is a natural double-low (erucic acid < 1%, glucosinolates < 30 micromol/g) germplasm and shows high degree of resistance to Sclerotinia sclerotiorum. Hybridizations were carried out between two Brassica species viz. B. rapa (2n = 20) and B. napus (2n = 38) as female and C. bursa-pastoris as male parent to introduce these desirable traits into cultivated Brassica species. Majority of F(1) plants resembled female parents in morphology and only a few expressed some characters of male parent, including the white petals. Based on cytological observation of somatic cells, the F(1) plants were classified into five types: two types from the cross with B. rapa, type I had 2n = 27-29; type II had 2n = 20; three types from the crosses with B. napus, type III was haploids with 2n = 19; type IV had 2n = 29; type V had 2n = 38. One to two chromosomes of C. bursa-pastoris were detected in pollen mother cells (PMCs) of type I plant by genomic in situ hybridization (GISH), together with chromosomal segments in ovary cells and PMCs of some F1 plants. Amplified fragment length polymorphism (AFLP) bands specific for the male parent, novel for two parents and absent bands in Brassica parents were generated in majority of F1 plants, even in Brassica-types and haploids, indicating the introgressions at various levels from C. bursa-pastoris and genomic alterations following hybridization. Some Brassica-type progeny plants had reduced contents of erucic acid and glucosinolates associated with improved resistance to S. sclerotiorum. The cytological and molecular mechanisms behind these results are discussed.

PMID:
17569050
DOI:
10.1007/s00299-007-0392-x
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center