Format

Send to

Choose Destination
See comment in PubMed Commons below
J Chem Phys. 2007 Jun 7;126(21):214312.

Seven-dimensional quantum dynamics study of the H+NH3-->H2+NH2 reaction.

Author information

1
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China. yangmh@wipm.ac.cn

Abstract

Initial state-selected time-dependent wave packet dynamics calculations have been performed for the H+NH3-->H2+NH2 reaction using a seven-dimensional model and an analytical potential energy surface based on the one developed by Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The model assumes that the two spectator NH bonds are fixed at their equilibrium values. The total reaction probabilities are calculated for the initial ground and seven excited states of NH3 with total angular momentum J=0. The converged cross sections for the reaction are also reported for these initial states. Thermal rate constants are calculated for the temperature range 200-2000 K and compared with transition state theory results and the available experimental data. The study shows that (a) the total reaction probabilities are overall very small, (b) the symmetric and asymmetric NH stretch excitations enhance the reaction significantly and almost all of the excited energy deposited was used to reduce the reaction threshold, (c) the excitation of the umbrella and bending motion have a smaller contribution to the enhancement of reactivity, (d) the main contribution to the thermal rate constants is thought to come from the ground state at low temperatures and from the stretch excited states at high temperatures, and (e) the calculated thermal rate constants are three to ten times smaller than the experimental data and transition state theory results.

PMID:
17567201
DOI:
10.1063/1.2739512
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Institute of Physics
    Loading ...
    Support Center