Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Endocrinol Metab. 2007 Sep;293(3):E754-8. Epub 2007 Jun 12.

Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion.

Author information

University Medical Center Utrecht, Image Sciences Institute, Heidelberglaan 100, Rm. Q0S.459, 3584 CX Utrecht, The Netherlands.


We previously showed that hypothalamic neuronal activity, as measured by the blood oxygen level-dependent (BOLD) functional MRI signal, declines in response to oral glucose intake. To further explore the mechanism driving changes in hypothalamic neuronal activity in response to an oral glucose load, we here compare hypothalamic BOLD signal changes subsequent to an oral vs. an intravenous (iv) glucose challenge in healthy humans. Seven healthy, normal-weight men received four interventions in random order after an overnight fast: 1) ingestion of glucose solution (75 g in 300 ml) or 2) water (300 ml), and 3) iv infusion of 40% glucose solution (0.5 g/kg body wt, maximum 35 g) or 4) infusion of saline (0.9% NaCl, equal volume). The BOLD signal was recorded as of 8 min prior to intervention (baseline) until 30 min after. Glucose infusion was associated with a modest and transient signal decline in the hypothalamus. In contrast, glucose ingestion was followed by a profound and persistent signal decrease despite the fact that plasma glucose levels were almost threefold lower than in response to iv administration. Accordingly, glucose ingestion tended to suppress hunger more than iv infusion (P < 0.1). We infer that neural and endocrine signals emanating from the gastrointestinal tract are critical for the hypothalamic response to nutrient ingestion.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center