Format

Send to

Choose Destination
BMC Genomics. 2007 Jun 12;8:168.

Genome-wide changes accompanying knockdown of fatty acid synthase in breast cancer.

Author information

1
Cancer Research Center, Burnham Institute for Medical Research, La Jolla, CA 92037, USA. lknowles@burnham.org <lknowles@burnham.org>

Abstract

BACKGROUND:

The lipogenic enzyme fatty acid synthase (FAS) is up-regulated in a wide variety of cancers, and is considered a potential metabolic oncogene by virtue of its ability to enhance tumor cell survival. Inhibition of tumor FAS causes both cell cycle arrest and apoptosis, indicating FAS is a promising target for cancer treatment.

RESULTS:

Here, we used gene expression profiling to conduct a global study of the cellular processes affected by siRNA mediated knockdown of FAS in MDA-MB-435 mammary carcinoma cells. The study identified 169 up-regulated genes (> or = 1.5 fold) and 110 down-regulated genes (< or = 0.67 fold) in response to knockdown of FAS. These genes regulate several aspects of tumor function, including metabolism, cell survival/proliferation, DNA replication/transcription, and protein degradation. Quantitative pathway analysis using Gene Set Enrichment Analysis software further revealed that the most pronounced effect of FAS knockdown was down-regulation in pathways that regulate lipid metabolism, glycolysis, the TCA cycle and oxidative phosphorylation. These changes were coupled with up-regulation in genes involved in cell cycle arrest and death receptor mediated apoptotic pathways.

CONCLUSION:

Together these findings reveal a wide network of pathways that are influenced in response to FAS knockdown and provide new insight into the role of this enzyme in tumor cell survival and proliferation.

PMID:
17565694
PMCID:
PMC1913522
DOI:
10.1186/1471-2164-8-168
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center