Format

Send to

Choose Destination
See comment in PubMed Commons below
J Agric Food Chem. 2007 Jul 11;55(14):5383-9. Epub 2007 Jun 7.

Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii.

Author information

1
Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, Hawaii 96822, USA.

Abstract

Nineteen bacterial strains were isolated from petroleum-contaminated soil in Hilo, HI, and characterized by two different spray-plated methods, turbidity test in liquid medium, and 16S rRNA gene sequence analysis. Analysis of the soil showed 13 polycyclic aromatic hydrocarbons (PAHs) in a range from 0.6 to 30 mg/kg of dry weight each and 12 PAH metabolites. Five distinct bacterial strains (C3, C4, P1-1, JS14, and JS19b1) selected from preliminary plating and turbidity tests were further tested for PAH degradation through single PAH degradation assay. Strains C3, C4, and P1-1 degraded phenanthrene (40 mg/L) completely during 7 days of incubation. Strain JS14 degraded fluoranthene (40 mg/L) completely during 10 days of incubation. Strain JS19b1 degraded 100% of phenanthrene (40 mg/L) in 7 days, 77% of fluorene (40 mg/L) in 14 days, 97% of fluoranthene (40 mg/L) in 10 days, and 100% of pyrene (40 mg/L) in 14 days. Turbidity tests showed that strains P1-1, JS14, and JS19b1 utilized several organophosphorus pesticides as growth substrate. P1-1 can degrade carbofenothion, chlorfenvinphos, diazinon, fonofos, and pirimiphos-methyl. JS14 can transform chlorfenvinphos and diazinon. JS19b1 can break down diazinon, pirimiphos-methyl, and temephos.

PMID:
17552538
DOI:
10.1021/jf0637630
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center