Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10170-4. Epub 2007 Jun 4.

Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer.

Author information

1
AntiCancer Inc., 7917 Ostrow Street, San Diego, CA 92111, USA.

Abstract

Bacterial infection occasionally has a marked therapeutic effect on malignancies, as noted as early as the 19th century. Recently, there have been attempts to develop cancer treatment by using tumor-targeting bacteria. These treatments were developed to deliver therapeutic molecules specifically to tumors. Researchers used anaerobic microorganisms that preferentially grew in necrotic tumor areas. However, the resulting tumor killing was, at best, limited. We have developed a far more effective bacterial cancer therapy by targeting viable tumor tissue by using Salmonella typhimurium leu-arg auxotrophs. Although these bacteria grow in viable as well as necrotic areas of tumors, the nutritional auxo trophy severely restricts growth in normal tissue. In the current study, we measured the antitumor efficacy of the S. typhimurium A1-R mutant, which is auxotrophic for leu-arg and has increased antitumor virulence selected by tumor passage. A1-R was used to treat metastatic PC-3 human prostate tumors that had been orthotopically implanted in nude mice. GFP was used to image tumor and metastatic growth. Of the 10 mice with the PC-3 tumors that were injected weekly with S. typhimurium A1-R, 7 were alive and well at the time the last untreated mouse died. Four A1-R-treated mice remain alive and well 6 months after implantation. Ten additional nontumor-bearing mice were injected weekly to determine the toxicity of S. typhimurium A1-R. No toxic effects were observed. The approach described here, where bacterial monotherapy effectively treats metastatic prostate tumors, is a significant improvement over previous bacterial tumor-therapy strategies that require combination with toxic chemotherapy.

PMID:
17548809
PMCID:
PMC1891231
DOI:
10.1073/pnas.0703867104
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center