Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2007 Jun 15;178(12):8127-37.

Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury.

Author information

Department of Anesthesiology and Intensive Care Medicine, Center for Biomedical Research, Tübingen University Hospital, Hoppe-Seyler-Strasse 3, D-72076 Tübingen, Germany.


Acute lung injury (ALI), such as that which occurs with mechanical ventilation, contributes to morbidity and mortality of critical illness. Nonetheless, in many instances, ALI resolves spontaneously through unknown mechanisms. Therefore, we hypothesized the presence of innate adaptive pathways to protect the lungs during mechanical ventilation. In this study, we used ventilator-induced lung injury as a model to identify endogenous mechanisms of lung protection. Initial in vitro studies revealed that supernatants from stretch-induced injury contained a stable factor which diminished endothelial leakage. This factor was subsequently identified as adenosine. Additional studies in vivo revealed prominent increases in pulmonary adenosine levels with mechanical ventilation. Because ectoapyrase (CD39) and ecto-5'-nucleotidase (CD73) are rate limiting for extracellular adenosine generation, we examined their contribution to ALI. In fact, both pulmonary CD39 and CD73 are induced by mechanical ventilation. Moreover, we observed pressure- and time-dependent increases in pulmonary edema and inflammation in ventilated cd39(-/-) mice. Similarly, pharmacological inhibition or targeted gene deletion of cd73 was associated with increased symptom severity of ventilator-induced ALI. Reconstitution of cd39(-/-) or cd73(-/-) mice with soluble apyrase or 5'-nucleotidase, respectively, reversed such increases. In addition, ALI was significantly attenuated and survival improved after i.p. treatment of wild-type mice with soluble apyrase or 5'-nucleotidase. Taken together, these data reveal a previously unrecognized role for CD39 and CD73 in lung protection and suggest treatment with their soluble compounds as a therapeutic strategy for noninfectious ALI.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center