Format

Send to

Choose Destination
Traffic. 2007 Aug;8(8):1068-79. Epub 2007 Jun 5.

Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain.

Author information

1
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.

Abstract

Endosomal sorting complex required for transport-III (ESCRT-III) is a large complex built from related ESCRT-III proteins involved in multivesicular body biogenesis. Little is known about the structure and function of this complex. Here, we compare four human ESCRT-III proteins - hVps2-1/CHMP2a, hVps24/CHMP3, hVps20/CHMP6, and hSnf7-1/CHMP4a - to each other, studying the effects of deleting predicted alpha-helical domains on their behavior in transfected cells. Surprisingly, removing approximately 40 amino acids from the C-terminus of each protein unmasks a common ability to associate with endosomal membranes and assemble into large polymeric complexes. Expressing these truncated ESCRT-III proteins in cultured cells causes ubiquitinated cargo to accumulate on enlarged endosomes and inhibits viral budding, while expressing full-length proteins does not. hVps2-1/CHMP2a lacking its C-terminal 42 amino acids further fails to bind to the AAA+ adenosine triphosphatase VPS4B/SKD1, indicating that C-terminal sequences are important for interaction of ESCRT-III proteins with VPS4. Overall, our study supports a model in which ESCRT-III proteins cycle between a default 'closed' state and an activated 'open' state under control of sequences at their C-terminus and associated factors.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center