Format

Send to

Choose Destination
See comment in PubMed Commons below
J Mol Cell Cardiol. 2007 Jul;43(1):54-62. Epub 2007 Apr 12.

Carbacyclin induces carnitine palmitoyltransferase-1 in cardiomyocytes via peroxisome proliferator-activated receptor (PPAR) delta independent of the IP receptor signaling pathway.

Author information

1
Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.

Abstract

Prostacyclin (PGI2) and its analogues exert cardioprotective effects via the rhodopsin type membrane PGI2 receptor, IP. Peroxisome proliferator-activated receptor (PPAR) delta is a nuclear receptor abundantly expressed in cardiomyocytes and plays a pivotal role in maintaining constitutive mitochondrial fatty acid beta-oxidation (FAO). Recently, a novel signaling pathway of PGI2 via PPARdelta has been demonstrated in non-cardiac tissues. We therefore examined whether carbacyclin (cPGI2), a PGI2 analogue, up-regulates transcriptional expression of carnitine palmitoyltransferase-1 (CPT-1), the rate-limiting enzyme in mitochondrial FAO, via PPARdelta in cardiomyocytes. Intraperitoneal injection of cPGI2 increased CPT-1 mRNA expression in murine hearts. Transcriptional activity was evaluated by PPAR responsive element (PPRE)-luciferase reporter gene assay in cultured neonatal rat cardiomyocytes. CPT-1 mRNA expression and PPRE promoter activity were significantly increased by cPGI2 in a concentration-dependent manner, where PPRE has been mapped to the promoter region of the CPT-1 gene. Moreover, the elevation of CPT-1 mRNA expression and PPRE promoter activity by cPGI2 was not abolished by H-89, a potent protein kinase A inhibitor, but was significantly inhibited in cardiomyocytes over-expressing a dominant-negative type of PPARdelta. Furthermore, electrophoretic mobility shift assays demonstrated that binding of PPARdelta to PPRE in the CPT-1 gene promoter is enhanced in response to cPGI2 stimulation. In addition, down-regulation of CPT-1 mRNA expression in cardiomyocytes subjected to hypoxia was attenuated by cPGI2. These results indicate that cPGI2 induces CPT-1 mRNA expression through PPARdelta, independent of the IP receptor signaling pathway, suggesting a possibility that cPGI2 modulates cardiac energy metabolism by activating FAO via PPARdelta.

PMID:
17540403
DOI:
10.1016/j.yjmcc.2007.04.003
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center