Send to

Choose Destination
J Clin Invest. 1991 Dec;88(6):1976-81.

Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome.

Author information

Medical Department, Ross Laboratories Division of Abbott Laboratories, Columbus, Ohio 43215.


Acute Respiratory Distress Syndrome (ARDS) is characterized by lung injury and damage to the alveolar type II cells. This study sought to determine if endogenous surfactant is altered in ARDS. Bronchoalveolar lavage was performed in patients at-risk to develop ARDS (AR, n = 20), with ARDS (A, n = 66) and in normal subjects (N, n = 29). The crude surfactant pellet was analyzed for total phospholipids (PL), individual phospholipids, SP-A, SP-B, and minimum surface tension (STmin). PL was decreased in both AR and A (3.48 +/- 0.61 and 2.47 +/- 0.40 mumol/ml, respectively) compared to N (7.99 +/- 0.60 mumol/ml). Phosphatidylcholine was decreased in A (62.64 +/- 2.20% PL) compared to N (76.27 +/- 2.05% PL). Phosphatidylglycerol was 11.58 +/- 1.21% PL in N and was decreased to 6.48 +/- 1.43% PL in A. SP-A was 123.64 +/- 20.66 micrograms/ml in N and was decreased to 49.28 +/- 21.68 micrograms/ml in AR and to 29.88 +/- 8.49 micrograms/ml in A. SP-B was 1.28 +/- 0.33 micrograms/ml in N and was decreased to 0.57 +/- 0.24 micrograms/ml in A. STmin was increased in AR (15.1 +/- 2.53 dyn/cm) and A (29.04 +/- 2.05 dyn/cm) compared to N (7.44 +/- 1.61 dyn/cm). These data demonstrate that the chemical composition and functional activity of surfactant is altered in ARDS. Several of these alterations also occur in AR, suggesting that these abnormalities occur early in the disease process.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Society for Clinical Investigation Icon for PubMed Central
Loading ...
Support Center