Send to

Choose Destination
See comment in PubMed Commons below
Acc Chem Res. 2007 Jul;40(7):466-74. Epub 2007 May 23.

Substrate trafficking and dioxygen activation in bacterial multicomponent monooxygenases.

Author information

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.


Non-heme carboxylate-bridged diiron centers in the hydroxylase components of the bacterial multicomponent monooxygenases process four substrates during catalysis: electrons, protons, dioxygen, and hydrocarbons. Understanding how protein-protein interactions mediate the transport of these substrates to the diiron center to achieve the selective oxidation of the hydrocarbon is a significant challenge. In this Account, we summarize our current knowledge of these processes with a focus on the methane monooxygenase system. We also describe recent results for the toluene/ o-xylene monooxygenase and phenol hydroxylase systems from Pseudomonas sporium OX1. The observation in these latter systems of a diiron(III) oxygenated intermediate having different Mössbauer parameters from analogous species in other carboxylate-bridged diiron proteins is discussed. The results indicate that the ability of the protein framework to tune the reactivity of the diiron center at structurally similar active sites is substantially more complex than previously recognized.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center