Send to

Choose Destination
Nat Mater. 2007 Jun;6(6):418-23. Epub 2007 May 21.

Modulus-density scaling behaviour and framework architecture of nanoporous self-assembled silicas.

Author information

Sandia National Laboratories, Advanced Materials Laboratory, 1001 University Blvd SE, Albuquerque, NM 87106, USA.


Natural porous materials such as bone, wood and pith evolved to maximize modulus for a given density. For these three-dimensional cellular solids, modulus scales quadratically with relative density. But can nanostructuring improve on Nature's designs? Here, we report modulus-density scaling relationships for cubic (C), hexagonal (H) and worm-like disordered (D) nanoporous silicas prepared by surfactant-directed self-assembly. Over the relative density range, 0.5 to 0.65, Young's modulus scales as (density)n where n(C)<n(H)<n(D)<2, indicating that nanostructured porous silicas exhibit a structure-specific hierarchy of modulus values D<H<C. Scaling exponents less than 2 emphasize that the moduli are less sensitive to porosity than those of natural cellular solids, which possess extremal moduli based on linear elasticity theory. Using molecular modelling and Raman and NMR spectroscopy, we show that uniform nanoscale confinement causes the silica framework of self-assembled silica to contain a higher portion of small, stiff rings than found in other forms of amorphous silica. The nanostructure-specific hierarchy and systematic increase in framework modulus we observe, when decreasing the silica framework thickness below 2 nm, provides a new ability to maximize mechanical properties at a given density needed for nanoporous materials integration.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center