Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Opt. 2007 Jun 10;46(17):3639-48.

Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory.

Author information

1
School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, USA. ebae@purdue.edu

Abstract

A model for forward scattering from bacterial colonies is presented. The colonies of interest consist of approximately 10(12) - 10(13) individual bacteria densely packed in a configuration several millimeters in diameter and approximately 0.1-0.2 mm in thickness. The model is based on scalar diffraction theory and accounts for amplitude and phase modulation created by three macroscopic properties of the colonies: phase modulation due to the surface topography, phase modulation due to the radial structure observed from some strains and species, and diffraction from the outline of the colony. Phase contrast and confocal microscopy were performed to provide quantitative information on the shape and internal structure of the colonies. The computed results showed excellent agreement with the experimental scattering data for three different Listeria species: Listeria innocua, Listeria ivanovii, and Listeria monocytogenes. The results provide a physical explanation for the unique and distinctive scattering signatures produced by colonies of closely related Listeria species and support the efficacy of forward scattering for rapid detection and classification of pathogens without tagging.

PMID:
17514326
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Support Center