Format

Send to

Choose Destination
J Chem Phys. 2007 May 14;126(18):184302.

CAl4X (X=Si,Ge): molecules with simultaneous planar tetracoordinate carbon, aluminum, and silicon/germanium.

Author information

1
State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun I30023, People's Republic of China.

Abstract

The authors report the first theoretical study on the hexa-atomic molecules CAl(4)X (X=Si,Ge) at the B3LYP/6-311++G(2d), MP2/6-311++G(2d), and CCSD(T)/6-311++G(3df) (single point) levels. Three low-lying isomers (within 2.0 kcal/mol) can be formally viewed as constructed by one Al+ interacting with the planar CAl3X- at the side Al-X bond (X-1), side Al-Al bond (X-2), and central C atom (X-3). The isomers X-1 and X-2 both have planar structures that include the planar tetracoordinate carbon, aluminum, and silicon/germanium, while the three-dimensional isomer X-3 has the pentacoordinate carbon. The planarity of X-1 and X-2 is ascribed to the ligand five-center two-electron bonding molecular orbital, similar to the orbital responsible for the planarity of CAl3X- (X=Si,Ge). Kinetically, the two planar structures X-1 and X-2 can be easily interconverted to each other via the intermediate X-3, indicative of their coexistence. Of particular interest, isomer X-1 represents the first example that simultaneously contains three types of planar centers in a single molecule, to the best of our knowledge. The three low-lying and structurally interesting isomers X-1, X-2, and X-3 await future experimental verification. The present results could enrich the planar chemistry.

PMID:
17508798
DOI:
10.1063/1.2723109

Supplemental Content

Full text links

Icon for American Institute of Physics
Loading ...
Support Center