Format

Send to

Choose Destination
Mol Ther. 2007 Jul;15(7):1390-9. Epub 2007 May 1.

Lentiviral vectors with CMV or MHCII promoters administered in vivo: immune reactivity versus persistence of expression.

Author information

1
Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA. rstripecke@mednet.ucla.edu

Abstract

Lentiviral vectors (LVs) are potential tools for genetic vaccination. To improve the safety of LV vaccines, we evaluated the selectivity, bio-distribution, persistence of expression, and immune potency of vesicular stomatitis virus G (VSV-G)-pseudotyped vectors transcriptionally targeted to antigen presenting cells (APCs) through a major histocompatibility complex class II (MHCII) promoter. Control vectors contained the ubiquitous cytomegalovirus (CMV) promoter. Bio-distribution studies after intravenous injections of LVs expressing green fluorescent protein (GFP) or luciferase were conducted by a combination of flow cytometry, immunofluorescence, real-time quantitative polymerase chain reaction (RT-Q-PCR) and whole-body bioluminescence analyses. GFP-expressing vectors showed selective expression in MHCII(+) cells of spleen and LV-CMV-GFP administration produced noticeable spleen inflammation, whereas LV-MHCII-GFP did not. Long-term optical imaging analyses of C57BL/6 mice injected with LV-CMV-LUC showed diminishing luciferase expression in the liver and spleen over time. Vaccination/boost with LV-CMV expressing the melanoma antigen tyrosinase-related protein 2 (TRP2) yielded dose-dependent antigen-specific CD8(+) T-cell reactivity and high protection against B16 melanoma challenge. Unexpectedly, administration of LVs containing the MHCII promoter resulted in persistence of luciferase expression and viral integration in MHCII(+) splenocytes and virtually no CD8(+) T-cell responses against TRP2. These studies reveal that APC transduction by LVs could lead to immune reactivity (LV-CMV) or persistence of transgene expression (LV-MHCII), providing a relevant paradigm for vaccination and gene replacement approaches.

PMID:
17505480
DOI:
10.1038/sj.mt.6300180
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center