Format

Send to

Choose Destination
Mol Microbiol. 2007 May;64(4):953-67.

The quorum sensing regulator HapR downregulates the expression of the virulence gene transcription factor AphA in Vibrio cholerae by antagonizing Lrp- and VpsR-mediated activation.

Author information

1
Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA.

Abstract

HapR is a quorum sensing-regulated transcription factor that represses the virulence cascade in Vibrio cholerae by binding to a specific site centred at -71 in the aphA promoter, ultimately preventing activation of the tcpPH promoter on the Vibrio pathogenicity island. In an effort to elucidate the mechanism by which HapR represses aphA expression, we identified two transcriptional regulators, Lrp and VpsR, both of which activate the aphA promoter. Lrp, the leucine-responsive regulatory protein, binds to a region between -136 and -123 in the promoter to initiate aphA expression. VpsR, the response regulator that controls biofilm formation, binds to a region between -123 and -73 to activate aphA expression. HapR represses aphA expression by antagonizing the functions of both of these activators. The HapR binding site at -71 lies downstream of the Lrp binding site and overlaps the VpsR binding site. HapR binding thus directly blocks access of VpsR to the promoter. A naturally occurring point mutation in the aphA promoter (G-77T), which has previously been shown to prevent HapR binding, also prevents VpsR binding. In the absence of HapR, either Lrp or VpsR is capable of achieving nearly full expression of the aphA promoter, but when present together their effects are to some degree additive. The aphA promoter is also negatively autoregulated and an AphA binding site is centred at -20. The results here provide a model for the dual activation of the aphA promoter by Lrp and VpsR as well as its dual repression by HapR and AphA.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center