Send to

Choose Destination
Ren Fail. 2007;29(4):399-407.

Furosemide prevents apoptosis and associated gene expression in a rat model of surgical ischemic acute renal failure.

Author information

Department of Radiation Oncology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA.


Recently, we demonstrated that furosemide improves renal hemodynamics and attenuates ischemia/reperfusion (I/R)-associated changes in angiogenesis-related gene expression. However, the effect of furosemide on I/R-induced apoptosis is not known. We utilized a rat model of acute ischemic nephropathy to test the hypothesis that furosemide attenuates I/R-induced apoptosis. Male Sprague-Dawley rats anesthetized with urethane (50 mg/kg) were randomly allocated into four groups (n = 6 each): sham operated saline infusion, sham operated with furosemide (30 microg/kg/hr) infusion, unilateral renal ischemia (1 hr) followed by six hours of reperfusion, and I/R with furosemide infusion. Apoptosis was measured in kidney samples and compared between groups using ANOVA with Bonferroni correction. Apoptosis-related gene expression was assessed using microarray analysis and validated with RT-PCR. Phosphorylation of Akt was analyzed using ELISA, and data were compared between groups using the Mann Whitney U test. Compared to the control group, I/R significantly (p < 0.001) induced apoptosis in both the cortex and medulla. Similarly, microarray analysis revealed that I/R induced (< or = two-fold increase compared to control group) 73 apoptosis-related genes. Phosphorylation of Akt was significantly (p < 0.05) downregulated after I/R. Treatment with furosemide significantly (p < 0.001) reduced I/R-induced apoptosis in both the cortex and medulla and attenuated the expression of 72 I/R-induced apoptosis-related genes. Compared to the I/R group, furosemide significantly (p < 0.01) upregulated the phosphorylation of Akt. These data suggest that a low dose furosemide infusion may attenuate I/R-induced apoptosis and associated gene transcription, and imply a possible novel molecular basis for the mechanism of action of furosemide in acute renal failure.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center