Format

Send to

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2007 May 30;129(21):6812-9. Epub 2007 May 8.

Ultrafast deactivation of an excited cytosine-guanine base pair in DNA.

Author information

  • 1Contribution from the Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.

Abstract

Multiconfigurational ab initio calculations and QM/MM molecular dynamics simulations of a photoexcited cytosine-guanine base pair in both gas phase and embedded in the DNA provide detailed structural and dynamical insights into the ultrafast radiationless deactivation mechanism. Photon absorption promotes transfer of a proton from the guanine to the cytosine. This proton transfer is followed by an efficient radiationless decay of the excited state via an extended conical intersection seam. The optimization of the conical intersection revealed that it has an unusual topology, in that there is only one degeneracy-lifting coordinate. This is the central mechanistic feature for the decay both in vacuo and in the DNA. Radiationless decay occurs along an extended hyperline nearly parallel to the proton-transfer coordinate, indicating the proton transfer itself is not directly responsible for the deactivation. The seam is displaced from the minimum energy proton-transfer path along a skeletal deformation of the bases. Decay can thus occur anywhere along the single proton-transfer coordinate, accounting for the remarkably short excited-state lifetime of the Watson-Crick base pair. In vacuo, decay occurs after a complete proton transfer, whereas in DNA, decay can also occur much earlier. The origin of this effect lies in the temporal electrostatic stabilization of dipole in the charge-transfer state in DNA.

PMID:
17488008
DOI:
10.1021/ja069176c
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center