Format

Send to

Choose Destination
See comment in PubMed Commons below
Int J Radiat Biol. 2007 Jun;83(6):367-74.

Ornithine decarboxylase activity is affected in primary astrocytes but not in secondary cell lines exposed to 872 MHz RF radiation.

Author information

  • 1Department of Environmental Science, University of Kuopio, Kuopio, Finland. Anne.Hoyto@uku.fi

Abstract

PURPOSE:

The effects of radiofrequency (RF) radiation on cellular ornithine decarboxylase (ODC) activity were studied in fibroblasts, two neural cell lines and primary astrocytes. Several exposure times and exposure levels were used, and the fields were either unmodulated or modulated according to the characteristics of the Global System for Mobile (GSM) communications.

MATERIALS AND METHODS:

Murine L929 fibroblasts, rat C6 glioblastoma cells, human SH-SY5Y neuroblastoma cells, and rat primary astrocytes were exposed to RF radiation at 872 MHz in a waveguide exposure chamber equipped with water cooling. Cells were exposed for 2, 8, or 24 hours to continuous wave (CW) RF radiation or to a GSM type signal pulse modulated at 217 Hz, at specific absorption rates of 1.5, 2.5, or 6.0 W/kg. Cellular ODC activities of cell samples were assayed.

RESULTS:

ODC activity in rat primary astrocytes was decreased statistically significantly (p values from 0.003 to <0.001) and consistently in all experiments performed at two exposure levels (1.5 and 6.0 W/kg) and using GSM modulated or CW radiation. In the secondary cell lines, ODC activity was generally not affected.

CONCLUSIONS:

ODC activity was affected by RF radiation in rat primary neural cells, but the secondary cells used in this study showed essentially no response to similar RF radiation. In contrast to some previous studies, no differences between the modulated and continuous wave signals were detected. Further studies with primary astrocytes are warranted to confirm the present findings and to explore the mechanisms of the effects.

PMID:
17487676
DOI:
10.1080/09553000701317341
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Support Center