Format

Send to

Choose Destination
Cell Res. 2007 May;17(5):411-21.

CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis.

Author information

1
Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.

Abstract

Potassium is one of the major macro-nutrients essential for a number of cellular processes in plants. Low potassium level in the soil represents a limiting factor for crop production. Recent studies have identified potassium transporters that are involved in potassium acquisition, and some of them are critical for potassium nutrition under low potassium conditions. However, little is understood on the molecular components involved in low potassium signaling and responses. We report here the identification of a calcineurin B-like protein-interacting protein kinase (CIPK9) as a critical regulator of low potassium response in Arabidopsis. The CIPK9 gene was responsive to abiotic stress conditions, and its transcript was inducible in both roots and shoots by potassium deprivation. Disruption of CIPK9 function rendered the mutant plants hypersensitive to low potassium media. Further analysis indicated that K(+) uptake and content were not affected in the mutant plants, implying CIPK9 in the regulation of potassium utilization or sensing processes.

PMID:
17486125
DOI:
10.1038/cr.2007.39
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center