Format

Send to

Choose Destination
See comment in PubMed Commons below
Bioinformatics. 2007 Jul 15;23(14):1713-7. Epub 2007 May 7.

Bioinformatics software for biologists in the genomics era.

Author information

1
Center for Evolutionary Functional Genomics, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona 85287-5301, USA. s.kumar@asu.edu

Abstract

The genome sequencing revolution is approaching a landmark figure of 1000 completely sequenced genomes. Coupled with fast-declining, per-base sequencing costs, this influx of DNA sequence data has encouraged laboratory scientists to engage large datasets in comparative sequence analyses for making evolutionary, functional and translational inferences. However, the majority of the scientists at the forefront of experimental research are not bioinformaticians, so a gap exists between the user-friendly software needed and the scripting/programming infrastructure often employed for the analysis of large numbers of genes, long genomic segments and groups of sequences. We see an urgent need for the expansion of the fundamental paradigms under which biologist-friendly software tools are designed and developed to fulfill the needs of biologists to analyze large datasets by using sophisticated computational methods. We argue that the design principles need to be sensitive to the reality that comparatively small teams of biologists have historically developed some of the most popular biological software packages in molecular evolutionary analysis. Furthermore, biological intuitiveness and investigator empowerment need to take precedence over the current supposition that biologists should re-tool and become programmers when analyzing genome scale datasets.

PMID:
17485425
DOI:
10.1093/bioinformatics/btm239
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center