Format

Send to

Choose Destination
J Biomech. 2007;40(14):3105-13. Epub 2007 May 7.

Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb.

Author information

1
Department of Engineering Science and Mechanics, (MC 0219), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.

Abstract

Measurements of human strength can be important during analyses of physical activities. Such measurements have often taken the form of the maximum voluntary torque at a single joint angle and angular velocity. However, the available strength varies substantially with joint position and velocity. When examining dynamic activities, strength measurements should account for these variations. A model is presented of maximum voluntary joint torque as a function of joint angle and angular velocity. The model is based on well-known physiological relationships between muscle force and length and between muscle force and velocity and was tested by fitting it to maximum voluntary joint torque data from six different exertions in the lower limb. Isometric, concentric and eccentric maximum voluntary contractions were collected during hip extension, hip flexion, knee extension, knee flexion, ankle plantar flexion and dorsiflexion. Model parameters are reported for each of these exertion directions by gender and age group. This model provides an efficient method by which strength variations with joint angle and angular velocity may be incorporated into comparisons between joint torques calculated by inverse dynamics and the maximum available joint torques.

PMID:
17485097
PMCID:
PMC6820133
DOI:
10.1016/j.jbiomech.2007.03.022
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center