Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2007 Jul;73(13):4100-9. Epub 2007 May 4.

Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin.

Author information

  • 1Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA.

Abstract

Since indole is present at up to 500 microM in the stationary phase and is an interspecies biofilm signal (J. Lee, A. Jayaraman, and T. K. Wood, BMC Microbiol. 7:42, 2007), we investigated hydroxyindoles as biofilm signals and found them also to be nontoxic interspecies biofilm signals for enterohemorrhagic Escherichia coli O157:H7 (EHEC), E. coli K-12, and Pseudomonas aeruginosa. The genetic basis of EHEC biofilm formation was also explored, and notably, virulence genes in biofilm cells were repressed compared to those in planktonic cells. In Luria-Bertani medium (LB) on polystyrene with quiescent conditions, 7-hydroxyindole decreased EHEC biofilm formation 27-fold and decreased K-12 biofilm formation 8-fold without affecting the growth of planktonic cells. 5-Hydroxyindole also decreased biofilm formation 11-fold for EHEC and 6-fold for K-12. In contrast, isatin (indole-2,3-dione) increased biofilm formation fourfold for EHEC, while it had no effect for K-12. When continuous-flow chambers were used, confocal microscopy revealed that EHEC biofilm formation was reduced 6-fold by indole and 10-fold by 7-hydroxyindole in LB. Whole-transcriptome analysis revealed that isatin represses indole synthesis by repressing tnaABC 7- to 37-fold in EHEC, and extracellular indole levels were found to be 20-fold lower. Furthermore, isatin repressed the AI-2 transporters lsrABCDFGKR, while significantly inducing the flagellar genes flgABCDEFGHIJK and fliAEFGILMNOPQ (which led to a 50% increase in motility). 7-Hydroxyindole induces the biofilm inhibitor/stress regulator ycfR and represses cysADIJPU/fliC (which led to a 50% reduction in motility) and purBCDEFHKLMNRT. Isogenic mutants showed that 7-hydroxyindole inhibits E. coli biofilm through cysteine metabolism. 7-Hydroxyindole (500 microM) also stimulates P. aeruginosa PAO1 biofilm formation twofold; therefore, hydroxyindoles are interspecies bacterial signals, and 7-hydroxyindole is a potent EHEC biofilm inhibitor.

PMID:
17483266
PMCID:
PMC1932762
DOI:
10.1128/AEM.00360-07
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center