Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2007 May 15;178(10):6642-52.

TNF-alpha induction of GM2 expression on renal cell carcinomas promotes T cell dysfunction.

Author information

1
Department of Immunology, Lerner Research Institute, Experimental Therapeutics, Taussig Cancer Center, Cleveland Clinic Foundation, OH 44195, USA.

Abstract

Previous studies from our laboratory demonstrated the role of tumor-derived gangliosides as important mediators of T cell apoptosis, and hence, as one mechanism by which tumors evade immune destruction. In this study, we report that TNF-alpha secreted by infiltrating inflammatory cells and/or genetically modified tumors augments tumor-associated GM2 levels, which leads to T cell death and immune dysfunction. The conversion of weakly apoptogenic renal cell carcinoma (RCC) clones to lines that can induce T cell death requires 3-5 days of TNF-alpha pretreatment, a time frame paralleling that needed for TNF-alpha to stimulate GM2 accumulation by SK-RC-45, SK-RC-54, and SK-RC-13. RCC tumor cell lines permanently transfected with the TNF-alpha transgene are similarly toxic for T lymphocytes, which correlates with their constitutively elevated levels of GM2. TNF-alpha increases GM2 ganglioside expression by enhancing the mRNA levels encoding its synthetic enzyme, GM2 synthase, as demonstrated by both RT-PCR and Southern analysis. The contribution of GM2 gangliosides to tumor-induced T cell death was supported by the finding that anti-GM2 Abs significantly blocked T cell apoptosis mediated by TNF-alpha-treated tumor cells, and by the observation that small interfering RNA directed against TNF-alpha abrogated GM2 synthase expression by TNF-transfected SK-RC-45, diminished its GM2 accumulation, and inhibited its apoptogenicity for T lymphocytes. Our results indicate that TNF-alpha signaling promotes RCC-induced killing of T cells by stimulating the acquisition of a distinct ganglioside assembly in RCC tumor cells.

PMID:
17475896
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center