Format

Send to

Choose Destination
Biochemistry. 2007 May 29;46(21):6340-52. Epub 2007 May 3.

A thermodynamic ligand binding study of the third PDZ domain (PDZ3) from the mammalian neuronal protein PSD-95.

Author information

1
Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.

Abstract

The thermodynamic parameters associated with the binding of several series of linear peptides to the third PDZ domain (PDZ3) of the postsynaptic density 95 protein (PSD-95) have been measured using isothermal titration calorimetry (ITC). Two strategies were pursued in developing these binding ligands: (1) systematic N-terminal truncation of sequences derived from the C-terminal regions of identified PDZ3-binding proteins (CRIPT, neuroligin-1, and citron) and (2) selective mutation of specific positions within a consensus hexapeptide (KKETEV) known to bind PDZ3. Each synthetically prepared peptide was used to titrate PDZ3, which yielded the changes in Gibbs free energy (DeltaG), enthalpy (DeltaH), and entropy (TDeltaS) for the binding event. Selected peptides were subjected to additional analysis, which entailed (1) measuring the change in heat capacity (DeltaCp) upon association, to assess the character of the binding interface, and (2) constructing thermodynamic double mutant cycles, to determine the presence of cooperative effects. From the first series, the CRIPT protein proved to be the better source for higher affinity sequences. From the second series, enhanced binding was associated with peptides that closely adhered to the established motif for class I PDZ domain C-termini, X-(T/S)-X-(V/I/L), and more specifically to a narrower motif of X-T-X-V. Further, in both series a length of six residues was necessary and sufficient to capture maximal affinity. In addition, there were significant influences upon binding by modifying the abutting "X" positions. The cumulative results provide greater detail into the specific nature of ligand binding to PDZ3 and will assist in the development of selective molecular probes for the study of this and structurally homologous PDZ domains.

PMID:
17474715
PMCID:
PMC2527733
DOI:
10.1021/bi062088k
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Chemical Society Icon for PubMed Central
Loading ...
Support Center