Format

Send to

Choose Destination
See comment in PubMed Commons below
Methods. 2007 Jun;42(2):196-203.

Molecular modelling methods for prediction of sequence-selectivity in DNA recognition.

Author information

1
School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.

Abstract

We describe how one can apply molecular modelling methods, based on the molecular mechanics/generalised Born (MM/GB) approach, to the prediction of the relative affinity of DNA minor groove binding ligands for different DNA sequences. We discuss the theoretical background to the technique, some variations in the methodology that can be employed, and illustrate its application through a case study: analysis of the energetics of binding of Hoechst 33258 to the minor groove of various A/T-rich DNA duplexes. We show how the underpinning molecular dynamics (MD) simulations can be set up, how they can be analysed for satisfactory behaviour, and various approaches to extracting thermodynamics of drug binding from them. We find that while certain elaborations to the basic MM/GB method can improve the agreement with experimental data (e.g., calculating the DNA perturbation energy), others have to be analysed with more caution (e.g., calculating configurational entropy changes). Overall, these methodologies can rank the affinity of a ligand for the minor groove of different DNA sequences fairly well, but the calculation of absolute binding affinities is not very reliable.

PMID:
17472901
DOI:
10.1016/j.ymeth.2006.09.002
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center