Send to

Choose Destination
Biochemistry. 2007 May 22;46(20):6126-33. Epub 2007 May 1.

A novel DNA modification by sulfur: DndA is a NifS-like cysteine desulfurase capable of assembling DndC as an iron-sulfur cluster protein in Streptomyces lividans.

Author information

Laboratory of Microbial Metabolism and College of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200030, China.


A novel DNA modification system by sulfur (S) in Streptomyces lividans 66 was reported to be encoded by a cluster of five genes designated dndA-E [Zhou, X., He, X., Liang, J., Li, A., Xu, T., Kieser, T., Helmann, J. D., and Deng, Z. (2005) Mol. Microbiol. 57, 1428-1438]. The dndA gene was cloned and the protein product expressed in Escherichia coli, purified to homogeneity, and characterized as a homodimeric protein of ca. 91 kDa. Purified DndA has a yellow color and UV-visible spectra characteristic of a pyridoxal phosphate-containing enzyme and was proven to be a cysteine desulfurase able to catalyze removal of elemental S atoms from l-cysteine to produce l-alanine with substrate specificity similar to that of E. coli IscS. DndC was also purified to homogeneity and found to contain a 4Fe-4S cluster by spectral analysis and have obvious ATP pyrophosphatase activity. DndA could catalyze iron-sulfur cluster assembly by activation of apo-Fe DndC protein prepared by removal of its iron-sulfur cluster using alpha,alpha'-dipyridyl. A mutated DndA, with serine substituted for cysteine at position 327, which was confirmed to have lost its corresponding cysteine desulfurase activity, also lost its ability to reactivate the apo-Fe DndC. The likely involvement of an interaction between DndA and DndC in the biochemical pathway for the unusual site-specific DNA modification in S. lividans 66 is discussed.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center