Format

Send to

Choose Destination
See comment in PubMed Commons below
Dev Comp Immunol. 2007;31(12):1278-96. Epub 2007 Apr 16.

Canine cathelicidin (K9CATH): gene cloning, expression, and biochemical activity of a novel pro-myeloid antimicrobial peptide.

Author information

1
Department of Anatomy, Kansas State University, Manhattan, KS 66506, USA.

Abstract

Cathelicidins, a group of cationic peptides found in leukocytes and epithelial cells, play a central role in the early innate immune defense against infection. Although these host defense peptides have been reported in several mammalian species, including primates, no cathelicidins have been identified in carnivores. Here we report the cloning, tissue expression and biological activity of a novel canine cathelicidin (K9CATH). The full-length cDNA sequence of K9CATH encodes a predicted 172 amino acid pre-propeptide that is 60-70% similar to other mammalian cathelicidins. Mass spectrometry analysis confirmed that the 38 aa mature K9CATH peptide was present in neutrophil granule contents. Synthetic K9CATH displayed broad antimicrobial activity against Gram-positive bacteria (Listeria monocytogenes, and Staphylococcus aureus; MICs (minimal inhibitory concentrations) 0.5 and 50 microM, respectively), Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Salmonella serotype Typhimurium, Pseudomonas aeruginosa, Proteus mirabilis; MICs 1.25 microM, Salmonella serotype Enteritidis; MIC 0.5 microM, and Neisseria gonorrhoeae; MIC 0.06 microM), and yeast (Candida albicans; MIC 12.5-50 microM). K9CATH demonstrated high antimicrobial activity against Ureaplasma canigenitalium, and lower activity against Ureaplasma urealyticum (MIC 0.06 and 50 microM, respectively). Similar to its ovine congener SMAP-29, K9CATH possesses salt-independent antimicrobial activity and LPS binding capacity. K9CATH displayed minimal hemolytic activity against human, dog and chicken erythrocytes. The potency and broad antimicrobial activity of K9CATH suggest that this peptide may act as a fundamental contributor to the innate immune responses in this carnivore species.

PMID:
17462733
DOI:
10.1016/j.dci.2007.03.007
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center