Format

Send to

Choose Destination
Mol Microbiol. 2007 May;64(3):647-64.

ExoR is genetically coupled to the ExoS-ChvI two-component system and located in the periplasm of Sinorhizobium meliloti.

Author information

1
Department of Medicine, Division of Infectious Diseases, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-0654, USA.

Abstract

Sinorhizobium meliloti enters into a symbiotic relationship with legume host plants, providing fixed nitrogen in exchange for carbon and amino acids. In S. meliloti, exoR and the exoS-chvI two-component system regulate the biosynthesis of succinoglycan, an exopolysaccharide important for host invasion. It was previously reported that a loss-of-function mutation in exoR and a gain-of-function mutation in exoS cause overproduction of succinoglycan and loss of motility, indicating that ExoR negatively regulates and ExoS-ChvI positively regulates downstream genes. However, a relationship between exoR and exoS-chvI has never been clearly established. By identification and detailed characterization of suppressor strains, we provide genetic evidence that exoR and exoS-chvI control many similar phenotypes. These include succinoglycan production, symbiosis, motility, and previously uncharacterized prototrophy and biofilm formation, all of which are co-ordinately restored by suppressors. We further demonstrate that ExoR is located in the periplasm, suggesting that it functions to regulate downstream genes in a novel manner. In pathogenic bacteria closely related to S. meliloti, exoS-chvI homologues are required for virulence and the regulation of cell envelope composition. Our data suggest that periplasmically localized ExoR and ExoS-ChvI function together in a unique and critical regulatory system associated with both free-living and symbiotic states of S. meliloti.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center