Format

Send to

Choose Destination
J Appl Toxicol. 2008 Jan;28(1):72-7.

Isolation and endotoxin activities of lipopolysaccharides from cyanobacterial cultures and complex water blooms and comparison with the effects of heterotrophic bacteria and green alga.

Author information

1
Biology Centre of the Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 370 05 Ceské Budejovice, Czech Republic.

Abstract

Massive cyanobacterial water blooms are serious environmental and health problems worldwide. While some cyanobacterial toxins such as peptide microcystins have been investigated extensively, other toxic components of cyanobacteria (e.g. lipopolysaccharides, LPS) are poorly understood. The present study characterized endotoxin activities of LPS isolated from (i) laboratory cyanobacterial cultures, (ii) cyanobacterial water bloom samples dominated by Microcystis sp., Planktothrix sp., Aphanizomenon sp. and Anabaena sp., (iii) heterotrophic Gram-negative bacteria Escherichia coli, Kluyvera intermedia, Pseudomonas putida and Pseudomonas fluorescens and (iv) green alga Pseudokirchneriella subcapitata. Toxicity results derived with Limulus amebocyte lysate assay (LAL-test) showed that endotoxin activities of LPS from both cyanobacteria and heterotrophic bacteria were comparable and the values were within a similar range (1 x 10(3)-1 x 10(6) Endotoxin Units, EU, per mg of isolated LPS). The highest activities among the cyanobacterial samples were observed in the Aphanizomenon sp. dominated water bloom. The results also suggest generally higher endotoxin activities in complex natural samples than in laboratory cyanobacterial cultures. Further, experiments with the eukaryotic green alga P. subcapitata demonstrated a need for careful purification of the LPS extracts prior to testing with the LAL assay as several contaminants may overestimate endotoxin activities. This study shows relatively high pyrogenicity of LPS from various cyanobacteria. Further research should focus on detailed toxicological and ecotoxicological characterization of LPS in massive cyanobacterial water blooms.

PMID:
17461433
DOI:
10.1002/jat.1257
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center