Format

Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2007 Apr 26;446(7139):1070-4.

Effect of natural iron fertilization on carbon sequestration in the Southern Ocean.

Author information

1
Laboratoire d'Océanographie et de Biogéochimie, Centre Océanologique de Marseille, CNRS, Université de la Méditerranée, campus de Luminy, case 901, 13288 Marseille Cedex 09, France. stephane.blain@univmed.fr

Abstract

The availability of iron limits primary productivity and the associated uptake of carbon over large areas of the ocean. Iron thus plays an important role in the carbon cycle, and changes in its supply to the surface ocean may have had a significant effect on atmospheric carbon dioxide concentrations over glacial-interglacial cycles. To date, the role of iron in carbon cycling has largely been assessed using short-term iron-addition experiments. It is difficult, however, to reliably assess the magnitude of carbon export to the ocean interior using such methods, and the short observational periods preclude extrapolation of the results to longer timescales. Here we report observations of a phytoplankton bloom induced by natural iron fertilization--an approach that offers the opportunity to overcome some of the limitations of short-term experiments. We found that a large phytoplankton bloom over the Kerguelen plateau in the Southern Ocean was sustained by the supply of iron and major nutrients to surface waters from iron-rich deep water below. The efficiency of fertilization, defined as the ratio of the carbon export to the amount of iron supplied, was at least ten times higher than previous estimates from short-term blooms induced by iron-addition experiments. This result sheds new light on the effect of long-term fertilization by iron and macronutrients on carbon sequestration, suggesting that changes in iron supply from below--as invoked in some palaeoclimatic and future climate change scenarios--may have a more significant effect on atmospheric carbon dioxide concentrations than previously thought.

Comment in

PMID:
17460670
DOI:
10.1038/nature05700
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center