Send to

Choose Destination
Curr Opin Neurobiol. 2007 Jun;17(3):318-24. Epub 2007 Apr 23.

Homeostatic signaling: the positive side of negative feedback.

Author information

Brandeis University Department of Biology, MS08 and Center for Behavioral Genomics, 415 South Street, Waltham, MA 02454, USA.


Synaptic homeostasis provides a means for neurons and circuits to maintain stable function in the face of perturbations such as developmental or activity-dependent changes in synapse number or strength. These forms of plasticity are thought to utilize negative feedback signaling to sense some aspect of activity, compare this with an internal set point, and then adjust synaptic properties to keep activity close to this set point. However, the molecular identity of these signaling components has not been firmly established. Recent work suggests that there are likely to be multiple forms of synaptic homeostasis, mediated by distinct signaling pathways and with distinct expression mechanisms. These include presynaptic forms that depend on retrograde signaling to presynaptic Ca(2+) channels, and postsynaptic forms influenced by BDNF, TNFalpha and Arc signaling. Current challenges include matching signaling elements to their functions (i.e. as detectors of activity, as part of the set-point mechanism and/or as effectors of synaptic change), and fitting these molecular candidates into a unified view of the signaling pathways that underlie synaptic homeostasis.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center