Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1991 Dec 5;266(34):22939-47.

The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein-receptor, and the neural cell adhesion molecule.

Author information

  • 1Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy.


A heparan sulfate proteoglycan is a component of all basement membranes. This molecule consists of three heparan sulfate side chains linked to a large core protein of approximately 400 kDa. We have isolated seven overlapping murine cDNA clones that encode the entire mRNA sequence of 12.685 kilobases of this molecule. This sequence has a single open reading frame of 3,707 amino acids that encodes for a protein of 396 kDa. Identical or near identical matchups with nine peptide sequences derived from the core protein of the molecule isolated from the Engelbreth-Holm-Swarm tumor were found with the deduced sequence. Sequence analysis and data base comparison of the deduced sequence show the protein to consist of five different domains, most of which contain internal repeats. Domain I contains a start methionine followed by a typical signal transfer sequence and a unique segment of 172 amino acids that contains the three probable sites of heparan sulfate attachment, SGD. Domain II contains four cysteine- and acidic amino acid-rich repeats that are very similar to those found in the LDL receptor and proteins such as GP330. Domain III consists of cysteine-rich and globular regions, both of which show similarity to those in the short arm of the laminin A chain. Domain IV contains 14 repeats of the immunoglobulin superfamily that are most highly similar to the immunoglobulin-like repeats in the neural cell adhesion molecule. Domain V contains three repeats with similarity to the laminin A chain G domain that are separated by epidermal growth factor-like regions not found in the laminin A chain. As the primary structural data agree with the appearance of the molecule in the electron microscope as a series of globules separated by rods, or "beads on a string," we have adopted the name perlecan for this molecule. The variety of domains in perlecan suggest multiple interactions with other molecules.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center