Send to

Choose Destination
Eur J Haematol. 2007 May;78(5):417-31.

Establishment and characterization of a novel imatinib-sensitive chronic myeloid leukemia cell line MYL, and an imatinib-resistant subline MYL-R showing overexpression of Lyn.

Author information

Department of Hematology and Oncology, Division of Clinical and Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.


In chronic myeloid leukemia (CML), resistance to imatinib is diverse. In addition to BCR-ABL-dependent mechanisms, BCR-ABL-independent mechanisms have been proposed. Here we established and characterized novel CML cell lines, an imatinib-sensitive cell line, MYL, and an imatinib-resistant subline, MYL-R. Treatment with imatinib inhibited phosphorylation of BCR-ABL and CrkL in both MYL and MYL-R, even though imatinib-induced apoptosis was preferentially observed in MYL than MYL-R, indicating that the resistance is based on a BCR-ABL-independent mechanism. MYL-R showed elevated expressions of Lyn mRNA, Lyn protein, phosphorylated Lyn, and phosphorylated STAT5. Silencing of Lyn by short-interfering RNA (siRNA) in MYL-R, but not in MYL, induced significant growth-inhibition, increased caspase-3 activity, and induced partial recovery from imatinib-resistance. Expression of Bcl-2, previously reported to be associated with Lyn-mediated resistance, was not elevated in MYL-R. Expression of Bim, which plays an important role in imatinib-induced cell-killing, was not suppressed in MYL-R. These results imply that diverse mechanisms of resistance exist among cell types. Treatment of MYL-R cells with various reagents known to have anti-leukemic activity revealed that zoledronic acid and the farnesyl transferase inhibitor (SCH 66336) showed strong synergism with imatinib; interferon alpha, PP2, CGP76030, and FK228 (depsipeptide) showed synergism; whereas soluble TRAIL and As2O3 showed additivity or antagonism, and 17-AAG and radicicol showed antagonism. Treatment with either PP2 or zoledronic acid induced greater growth-reduction in MYL-R than MYL. Taken together, Lyn may play an important role in imatinib-resistance in MYL-R. Some novel reagents, including siRNA targeting Lyn, may have good potential to overcome this resistance.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center