Format

Send to

Choose Destination
See comment in PubMed Commons below
J Invest Dermatol. 2007 Sep;127(9):2106-15. Epub 2007 Apr 12.

Hair follicle regeneration using grafted rodent and human cells.

Author information

  • 1Life Science Research Center, Shiseido Research Center, Yokohama, Kanagawa, Japan.

Abstract

Hair follicle regeneration involves epithelial-mesenchymal interactions (EMIs) of follicular epithelial and dermal papilla (DP) cells. Co-grafting of those cellular components from mice allows complete hair reconstitution. However, regeneration of human hair in a similar manner has not been reported. Here, we investigated the possibility of cell-based hair generation from human cells. We found that DP-enriched cells (DPE) are more critical than epidermal cells in murine hair reconstitution on a cell number basis, and that murine DPE are also competent for hair regeneration with rat epidermal cells. Co-grafting of human keratinocytes derived from neonatal foreskins with murine DPE produced hair follicle-like structures consisting of multiple epidermal cell layers with a well-keratinized innermost region. Those structures expressed hair follicle-specific markers including hair keratin, and markers expressed during developmental stages. However, the lack of regular hair structures indicates abnormal folliculogenesis. Similar hair follicle-like structures were also generated with cultured human keratinocytes after the first passage, or with keratinocytes derived from adult foreskins, demonstrating that epidermal cells even at a mature stage can differentiate in response to inductive signals from DP cells. This study emphasizes the importance of EMI in follicular generation and the differentiation potential of epidermal keratinocytes.

PMID:
17429436
DOI:
10.1038/sj.jid.5700823
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center