Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2007 Jun 1;282(22):16454-64. Epub 2007 Apr 11.

Tau aggregation and toxicity in a cell culture model of tauopathy.

Author information

Center for Molecular Neurobiology, the Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus 43210, USA.


Intracellular aggregation of the microtubule-associated protein tau into filamentous inclusions is a defining characteristic of Alzheimer disease. Because appearance of tau-aggregate bearing lesions correlates with both cognitive decline and neurodegeneration, it has been hypothesized that tau aggregation may be directly toxic to cells that harbor them. Testing this hypothesis in cell culture has been complicated by the resistance of full-length tau isoforms to aggregation over experimentally tractable time periods. To overcome this limitation, a small-molecule agonist of the tau aggregation reaction, Congo red, was used to drive aggregation within HEK-293 cells expressing full-length tau isoform htau40. Formation of detergent-insoluble aggregates was both time and agonist concentration dependent. At 10 microM Congo red, detergent-insoluble aggregates appeared with pseudo-first order kinetics and a half-life of approximately 5 days. By 7 days in culture, total tau levels increased 2-fold, with approximately 30% of total tau converted into detergent-insoluble aggregates. Agonist addition also led to rapid losses in the tubulin binding activity of tau, although tau was not hyperphosphorylated as judged by occupancy of phosphorylation sites Ser396/Ser404. Tau aggregation was associated with decreased viability as detected by ToPro-3 uptake. The results, which establish a new approach for analysis of tau aggregation in cells independent of tau hyperphosphorylation, suggest that conformational changes associated with aggregation are incompatible with microtubule binding, and that toxicity associated with intracellular tau aggregation is not acute but develops over a period of days.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center