Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2007 Jun 1;282(22):16544-52. Epub 2007 Apr 11.

Beta-globin active chromatin Hub formation in differentiating erythroid cells and in p45 NF-E2 knock-out mice.

Author information

Department of Cell Biology, Erasmus Medical Center, P. O. Box 2040, 3000 CA Rotterdam, The Netherlands.


Expression of the beta-globin genes proceeds from basal to exceptionally high levels during erythroid differentiation in vivo. High expression is dependent on the locus control region (LCR) and coincides with more frequent LCR-gene contacts. These contacts are established in the context of an active chromatin hub (ACH), a spatial chromatin configuration in which the LCR, together with other regulatory sequences, loops toward the active beta-globin-like genes. Here, we used recently established I/11 cells as a model system that faithfully recapitulates the in vivo erythroid differentiation program to study the molecular events that accompany and underlie ACH formation. Upon I/11 cell induction, histone modifications changed, the ACH was formed, and the beta-globin-like genes were transcribed at rates similar to those observed in vivo. The establishment of frequent LCR-gene contacts coincided with a more efficient loading of polymerase onto the beta-globin promoter. Binding of the transcription factors GATA-1 and EKLF to the locus, although previously shown to be required, was not sufficient for ACH formation. Moreover, we used knock-out mice to show that the erythroid transcription factor p45 NF-E2, which has been implicated in beta-globin gene regulation, is dispensable for beta-globin ACH formation.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center